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Abstract

It is well known that the ground state of low-dimensional antiferromagnets deviates from

N_el states due to strong quantum fluctuations. Even in the presence of long-range order,

those fluctuations produce a substantial reduction of the magnetic moment from its sat-

uration value. Numerical simulations in artisotropic antiferromagnetic chains suggest that

quantum fluctuations over N_el order appear in the form of localized reversal of pairs of

neighboring spins. In this paper, we propose a coherent state representation for the ground

state to describe the above situation. In the one-dimensional case, our wave function cor-

responds to a two-mode Glauber state, when the N_el state is used as a reference, while

the boson fields are associated to coherent flip of spin pairs. The coherence manifests itself

through the antiferromagnetic long-range order that survives the action of quantum fluctu-

ations. The present representation is different from the standard zero-point spin wave state,

and is asymptotically exact in the limit of strong anisotropy. The fermionic version of the

theory, obtained through the Jordan-Wigner transformation, is also investigated.

1 Introduction

The Heisenberg model has been extensively studied for many years as a non trivial many-body

problem in quantum magnetism. For low dimensional systems, the ground state deviates from N_el

ordering due to strong quantum fluctuations [1]. The determination of this ground state represents

a fascinating problem, that in one dimension originated a whole branch of Mathematical Physics

based in the so called "Bethe-Ansatz" technique [2]. However, exact solutions are extremely

intricate, very often not susceptible of a direct physical intuition, and in the case of the Heisenberg
model, they are restricted to one dimension.

In this contribution, we would like to present a novel approach based in a localized descripti6n

of quantum fluctuations. If one takes as a reference the Ising limit, with a ground state of

N_el type, switching the transverse part of the Heisenberg Hamiltonian may be visualized as

a disordering process, where pairs of neighboring spins are simultaneously flipped, the ground

state being a quantum superposition of admixtures contained in the manifold of total S_ = 0.

This effect has been systematically observed in numerical simulations for anisotropic Heisenberg

chains [3], and was used by Lagos and the author as the heuristic base for the construction of a

trial solution [1]. To fix ideas, we will concentrate in the case of spin 1/2, and most of the examples

will refer to a one-dimensional system. The theory can be extended to arbitrary dimension [4],
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and to arbitrary value of the spin [5]. The antiferromagnetic Heisenberg Hamiltonian with axial

anisotropic exchange can be written as:

[ ° ]7-l = J _ Sz(i)Sz(j) + _ {S+(i)S_(j) + S_(i)S+(j)}
<i./>

(i)

where i,j are site indexes for nearest neighbors, J > 0 is the antiferromagnetic exchange, the S's

are spin 1/2 operators, and a is the axial anisotropy parameter. Special cases of Hamiltonian (1)

are: i) _ = O, the Ising case; ii) ct = 1, the isotropic Heisenberg model; iii) ct _ oo, the so called

'XY-model'.

It is important to stress that the approach that will be proposed here is not perturbative, in

spite that the Ising limit is considered as a departure point for its formulation. The method works

successfully in the axial anisotropic regime, and is asymptotically exact for high anisotropy. Near

the isotropic point, however, a delocalization transition occurs, and the linear spin wave theory

becomes a better approximation when compared with exact results or numerical simulations [6].

However, the treatment can be extended in a variational way to account for the isotropic case,

or the Heisenberg-XY regime [7]. In particular, for two dimensions, isotropic exchange, and spin

S = 1/2, the ground energy deviates less than 0.5% [7] from results obtained by elaborate Monte

Carlo calculations [8].

2 The Wave Function

The Hamiltonian (1) is said to represent the so called XXZ model, with the axial-anisotropy

region confined to the interval 0 < a < 1. In the Ising limit (a = 0), the ground state is of N6el

type. For the infinite chain, there is a broken symmetry, and one of the two possible N_el states

has to be chosen as a reference state. They both are connected by time inversion, the ground

state of the infinite system being a doublet in the anisotropic region. The phase transition, with

the presence of long-range order and a symmetry broken ground state, requires degeneracy. In

contrast, in finite chains, the spectrum is not degenerate and the ground state is an eigenstate

of the time-inversion operator (symmetric or antisymmetric, depending on the number of spins),

with equal admixtures of both N6el kets.

For our developments here, we will choose the N_l state [A/'), where the eigenvalues of

the Sz(m) operators for the linear chain are -_ (-1)". With the usual definition of spin ladder

operators S+ (m), we define boson-like operators by:

Ct = _/_{_o_N+ _,,S+(m+l)S_(m)}, (2)

m odd

where N is the total number of sites in the chain. Operators defined by (2) and (3) flip pairs of

neighboring spins when applied to the reference Nbel state ]A/'). Two sequences with translational

symmetry are possible, which we label by even and odd. It is apparent that a similar construction
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1 (__l)m+l, interchanging the roles ofcan be realized with the other N6el state [Af)' with Sz --*

operators (2) and (3).

In the quasi-Ising limit, the ground state is close to [.Af), and under this assumption we obtain

the following algebra for the ¢'s:

= [+o, =1, E+o, = [+o, =0, (4)

which are boson-like commutation relations. Within the same approximation, and restricting

ourselves to the manifold Sz = 0, the Heisenberg Hamiltonian (1) can be written as a two-mode

harmonic oscillator Hamiltonian [1]:

_= +(+_+o+ +_+o)+ Eg(.), (_)

where Eg(a) is the ground state energy.
The N6el state satisfies the relations:

=1 N =1 N (6)

showing that the Ndel state, or quasi-classical state, can be represented as a Glauber state [9], in

terms of the ¢'s operators. The eigenvalue in (6), that also enters in the definitions (2,3), has

been chosen so as to cancel the linear terms in Hamiltonian (5). Using a standard notation, we

define translation operators by:

.(z) = {z+-z'+'}, (7)

where ¢ may be the even or odd operator. A coherent state is thus obtained as:

* t * ?
[zl,z2) =exp{zl¢_-zlG}exp{z2¢o-Z2¢o}[O ), (s)

with Zl, z 2 two arbitrary complex numbers. If we write

Z 1 = Z 2 = _C_

we get a closed expression for the N6el state as a minimum uncertainty wave packet of the ¢'s

operators. Of course, an equivalent representation can be constructed with the N6el ket as the

vacuum, just by shifting the definitions of the ¢'s in a constant, and thus introducing linear terms

in Hamiltonian (5).

Since the N6el state is a well defined state, we would like to represent the ground l0 >, in

terms of fluctuations over the N6el state IN). This can be accomplished in closed analytic form,

by inverting expression (8):

(9)

The structure displayed by (9) is quite interesting. Quantum fluctuations over the quasi-classical

state ]A/') are induced by the ¢'s operators. The distribution of fluctuations is Poissonian, the
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anisotropy parameter a being related to the width of the wave packet. For a sufficiently small,

the state (9) displays long-range order in spite of quantum fluctuations, but the effective magnetic

moment is reduced from its saturation value. A vanishing magnetic moment signals at a phase

transition as a function of the parameter a.

In spite that the algebra given by (4) is obtained in the Ising limit, the trial state (9) results

to be extremely accurate in describing the energy and correlation functions in the whole interval

0 < a < 1. The one dimensional case represents the most stringent test for the wave function,

since, as we will sketch below, the accuracy of the method improves with the dimension [4]. The

energy per spin and the staggered magnetic moment corresponding to our trial state (9) can be

put in closed analytical form in terms of Bessel functions of integer order [5]:

Eg = (017"(]0) = -J [J02(2a)+ J_(2a)+ 2aJl(2a)] (10)
4

Mz = (0lSz(m)10) - (--1)mJo(2a). (11)
2

The generalization to higher dimensions is rather straightforward [4]. If one assumes that the

lattice is bipartite, i.e. not frustrated for N6el ordering, the corresponding boson-like operators are
defined as:

= s+(a + + 2(z- 1) (12)
R

where R labels sites in a sublattice, {5} the set of nearest neighbors, and z is the coordination

number. The reference N_el state IN >, in this case, assigns up spins to the R sublattice, and

down spins to R + 5. The interesting formula is the analogue of (9) for the ground state:

{ a _-_ _--_ (¢_ - ¢,) } IA/") . (13)10) = exp 2(z- 1) ,

Due to the _ factor in the exponential of (13), one realizes that the importance of quantum
z(z-x I , ,

fluctuations diminishes with the coordination number Z, and correspondingly with the dimension-

ality. However, closed form expression for arbitrary dimension and spin have not been obtained

yet, even for the simplest lattice structure (like the square lattice) [10]. In spite of the above

fact, using the Hellmann-Feynman theorem [5], one can show that the error in the energy, as

calculated with the state (13), is proportional to a 4. To go towards the isotropic point and to the

Heisenberg-XY region, one has to generalize the theory in a vaxiational way [7].

3 The Jordan-Wigner transformation

The one-dimensional Heisenberg model for spin 1/2 can be mapped onto a spinless fermion model

through the so called Jordan-Wigner transformation [11]. The two spin states are mapped onto

fermion states with occupation numbers 0 and 1. Two fermions can not occupy a single site (one

may think in a very large on-site Coulomb repulsion), and they hop in a lattice with nearest

neighbors interactions. The transformation is accomplished by:

S_(n) = exp/-iTr, m<,,_ C_Cm} Cm, (14)
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where the C, C t are fermion operator s. We readily obtain the relations:

s_(m + 1)= cic.,+x,

l Nm,s_(.,) = &(m)+

that substituted in (1) yield the following fermion Hamiltonian:

where t = Ja/2, V = J. If J > 0, the fermion interaction V is repulsive. For positive er,

Hamiltonian (15) describes hole-like fermions. An electron-like system is obtained by changing

ct --+ -a. We already know that the properties of the Heisenberg Hamiltonian (1) are invariant

under such a change [12]. Antiferromagnetic ordering implies that the total number of fermions

is _, and the fermion ket that corresponds to the N&el state is the one with

1[i-F(--1)TM]<N=>= _

We will call this state [Af > to keep continuity with the previous sections. If one translates our

ground state (9) into fermion language, one gets:

with

u = E(-1)- (ca+it. - cat.+i),

and mean occupation number given by

1[1+ (-1)mJo(2_)],<OlgmlO>=

(16)

where a = 2t/V. As in the spin case, most physical interesting quantities can be calculated in

closed analytical form using the trial ket (16). For the fermion-fermion correlation functions, this

has been done in Ref.[13]. A quantity which is important to investigate possible Fermi liquid

behavior, is the one-particle momentum distribution [14]. In our case, this can be obtained

analytically with (16), yielding:

1 [1- sin(2t_cosk)],(Nk)ho,. = (17)

for hole-like fermions, and

111 + sin (2c_ cos k)] (18)(Nk)po,, = _

for a particle-like system. The above distributions display a soft variation with the wave number

k, and therefore no Fermi liquid behavior. The highly correlated limit c_ -+ 0, yields the constant

value 1/2, with the complete destruction of the Fermi surface of non-interacting particles.
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